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A well-known result due to Hill provides an exact expression for the bulk modulus of any mul-

ticomponent elastic composite whenever the constituents are isotropic and the shear modulus
is uniform throughout. Although no precise analog of Hill’s result is available for the opposite
case of uniform bulk modulus and varying shear modulus, it is shown here that some similar
statements can be made for shear behavior of random polycrystals composed of laminates of
isotropic materials. In particular, the Hashin-Shtrikman-type bounds of Peselnick, Meister,
and Watt for random polycrystals composed of hexagonal (transversely isotropic) grains are
applied to the problem of polycrystals of laminates. An exact product formula relating the
Reuss estimate of bulk modulus and an effective shear modulus (of laminated grains compos-
ing the system) to products of the eigenvalues for quasi-compressional and quasi-uniaxial shear
eigenvectors also plays an important role in the analysis of the overall shear behavior of the
random polycrystal. When the bulk modulus is uniform in such a system, the equations are
shown to reduce to a simple form that depends prominently on the uniaxial shear eigenvalue
— as expected from physical arguments concerning the importance of uniaxial shear in these
systems. One application of the analytical results presented here is for benchmarking numerical
procedures used for estimating elastic behavior of complex composites.

PACS numbers: 46.65.+g,46.25.Ce,46.25.-y

I. INTRODUCTION

In the course of analyzing a problem on fluid-
dependence of shear modulus in poroelastic systems, the
author [1] uncovered an unanticipated identity in elastic-
ity that appears to have wider implications for many elas-
tic systems and/or composites. The basic result states
that for any hexagonal (or transversely isotropic) elas-
tic system there is an exact product formula, namely,
6KRGV

eff = ω+ω−, relating the Reuss estimate KR of the
bulk modulus times the Voigt estimate GV

eff of the uniax-
ial part of the shear modulus to the product of the two
system eigenvalues ω± for quasi-compressional and quasi-
shear modes. There is also a second product formula with
the roles of the Reuss and Voigt averages reversed, but
this second identity is somewhat less important as we
shall see.

Our goal here will be to show how these facts help to
remove in part (although only in one special, but never-
theless interesting, case) the asymmetry in the analysis
of elastic composites resulting from the existence of Hill’s
well-known formula [2–4] for arbitrary elastic composites,
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showing that

K∗ =

[

N
∑

n=1

fn

Kn + 4µ/3

]−1

− 4µ/3. (1)

Here the bulk modulus of the n-th constituent is Kn,
the shear modulus takes the same value µn = µ for all
n = 1, . . . , N , and the overall effective bulk modulus is
K∗. The volume fractions fn are all nonnegative, and
add up to unity. In general there is in fact no correspond-
ing relationship for the overall shear modulus µ∗, when
instead the system has constant bulk modulus Kn = K
for all N constituents. But, nevertheless, the existence of
formulas quite analogous to (1) for shear will be demon-
strated for a model random polycrystal composed of lam-
inated grains.

As always in the theory of composites, there are several
clear limitations to the use of the analysis in practice: (a)
the continuum hypothesis, (b) the implicit assumption of
adequate separation of scales between sizes of grains and
of the overall composite, and (c) an assumption of neg-
ligible porosity. The continuum hypothesis will clearly
be violated if the grain sizes are too small, approaching
nanometer sizes and below. The deviations expected in
our case are similar to those observed in deviations from
the Hall-Petch effect [5–7], i.e., a softening of the com-
posite as a function of decreasing grain size once the size
is below some threshold. This effect is caused in part
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by a significant increase in grain-to-grain interface area
(which is not accounted for by the present theory) in
composites when the grains become too small. At still
smaller grain sizes, atomic scale effects become impor-
tant and the continuum theory must clearly fail. At the
other extreme, if the grains are too large, then there may
not be sufficient numbers of particles in the sample for
the separation of scales between composite and grains
to be adequate. This issue is related to the question of
what is an adequate REV (representative elementary vol-
ume) [8–10]. If the grains are too large and, therefore,
too few, the entire sample may not be large enough to
serve as an adequate REV. Finally, when a polycrystal
is constructed by assembling many crystalline grains, it
is also important that very little porosity remain in the
resulting polycrystal. It has been estimated [11] that as
little as 0.5% porosity in a composite is sufficient to make
it important to include the porosity in the model. But,
except to exclude it thus from consideration, porosity is
not discussed here.

Section II introduces the notation and basic results
used in the rest of the paper. Section III considers the
case of constant bulk modulus, and shows that the Voigt
and Reuss averages for shear modulus, although differing
in their numerical values, nevertheless depend on simple
averages of the shear modulus plus another average com-
parable to (1). Section IV considers the general problem
for bounds on the moduli of random polycrystals of lam-
inates, with specail emphasis on the Peselnick-Meister-
Watt bounds [12, 13] for polycrystals. The discussion of
Section V summarizes some practical conclusions about
the analysis and also makes a comparison with a “self-
consistent” estimate related to the bounds. Two techni-
cal Appendices summarize results used in the main text.

II. ELASTICITY OF LAYERED MATERIALS

We assume that a typical building block of the random
system is a small grain of laminate material whose elas-
tic response for such a transversely isotropic (hexagonal)
system can be described by:
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where σij are the usual stress components for i, j = 1−3
in Cartesian coordinates, with 3 (or z) being the axis
of symmetry (the lamination direction for such a lay-
ered material). Displacement ui is then related to strain
component eij by eij = (∂ui/∂xj + ∂uj/∂xi)/2. This
choice of definition introduces some convenient factors of
two into the 44, 55, 66 components of the stiffness matrix
shown in (2).

Although some of the results presented here are more
general, we will assume for definiteness that this stiffness
matrix in (2) arises from the lamination of N isotropic
constituents having bulk and shear moduli Kn, µn, in
the N > 1 layers present in each building block. It is im-
portant that the thicknesses dn always be in the same
proportion in each of these laminated blocks, so that
fn = dn/

∑

n′ dn′ . But it is not important what order
the layers were added to the blocks, as Backus’s formu-
las [14] for the constants show. For the overall behavior
for the quasistatic (long wavelength) behavior of the sys-
tem we are studying, Backus’s results (also see [4, 15])
state that

c33 =
〈

1
K+4µ/3

〉−1

, c13 = c33

〈

K−2µ/3
K+4µ/3

〉

,

c44 =
〈

1
µ

〉−1

, c66 = 〈µ〉 ,

c11 =
c2
13

c33
+ 4c66 − 4

〈

µ2

K+4µ/3

〉

, c12 = c11 − 2c66.

(3)
This bracket notation can be correctly viewed: (a) as a
volume average, (b) as a line integral along the symmetry
axis x3, or (c) as a weighted summation 〈Q〉 =

∑

n fnQn

over any relevant physical quantity Q taking a constant
value Qn in the n-th layer.

The bulk modulus for each such building block (or
crystalline grain if you like) is that given by the compres-
sional Reuss average KR of the corresponding compliance
matrix sij [the inverse of the usual stiffness matrix cij ,
whose nonzero components are shown in (2)]. The well-
known result is e = e11 + e22 + e33 = σ/Keff , where
1/Keff = 1/KR = 2s11 +2s12 +4s13 + s33. This quantity
can be expressed in terms of the stiffness elements as

1

KR − c13
=

1

c11 − c66 − c13
+

1

c33 − c13
. (4)

When µn =const, it is easy to show that (4) implies (1).
Even though Keff is the same for every grain, since

the grains themselves are not isotropic, the overall bulk
modulus K∗ of the random polycrystal is not necessarily
the same as Keff for the individual grains [16]. Hashin-
Shtrikman bounds on K∗ for random polycrystals whose
grains have hexagonal symmetry [12, 13] show in fact
that the value KR lies outside the bounds in many situ-
ations. We will say more about this in Section IV.

In general an upper bound on the overall shear modu-
lus of an isotropic polycrystal [16] is given by the Voigt
average over shear of the stiffness matrix, which may be
written as

µV =
1

5

(

GV
eff + 2c44 + 2c66

)

. (5)

This expression can be taken as the definition of GV
eff .

Eq. (5) implies that GV
eff = (c11 + c33 − 2c13 − c66)/3.

GV
eff is the energy per unit volume in a grain when a pure

uniaxial shear strain of unit magnitude is applied to the
grain along its axis of symmetry [1].
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III. CONSTANT BULK MODULUS

As a first result, consider a laminated grain composed
of isotropic constituents, all having the same bulk mod-
ulus K in each layer, but differing shear moduli. Then,
if we define the function [compare (1)]

g(ζ) =

[

N
∑

n=1

fn

µn + ζ

]−1

− ζ, (6)

we find from (3) that GV
eff = g(ζ) with ζ = 3K/4. This

function g(ζ) has the interesting and useful properties
that

c44 = 〈1/µ〉
−1

≡ g− ≤ g(ζ) ≤ g+ ≡ 〈µ〉 = c66. (7)

Furthermore, g(ζ) is a monotonic function, achieving its
lower bound when ζ = 0 and approaching its upper
bound as ζ → ∞. This formula shows in an elementary
way how GV

eff = g(3K/4) — and therefore µV — depends
on the constant bulk modulus of the system, and that
this component of the Voigt bound on the overall shear
modulus increases with increasing magnitude of the bulk
modulus. The overall Voigt bound/estimate (5) for shear
therefore has very similar behavior, but the magnitude of
the effect is reduced by a factor of 5, since this is only one
of the five distinct contributors to the overall shear be-
havior of the system. So the largest change in the Voigt
shear modulus that variations in bulk modulus can ever
induce are expected to be on the order of 20% (or less)
of the difference c66 − c44.

Similarly, the Reuss average for shear is

µR =

[

1

5

(

1

GR
eff

+
2

c44
+

2

c66

)]−1

, (8)

which is also a rigorous lower bound on the overall
shear modulus of the polycrystal [16]. For each hexago-
nal grain, the product formulas 3KRGV

eff = 3KV GR
eff =

ω+ω−/2 = c33(c11 − c66) − c2
13 are valid. The symbols

ω± stand for the quasi-compressional and quasi-uniaxial
shear eigenvalues for all the grains [1]. The product for-
mulas show immediately that GR

eff = GV
effKR/KV = GV

eff ,
since KR = KV = K. Thus, for this relatively simple
system, pure compression (e11 = e22 = e33) is an eigen-
vector corresponding to stiffness eigenvalue 3K. Uniaxial
shear strain (e33 = −2e11 = −2e22) is also an eigenvector
and 2GV

eff = 2GR
eff is the corresponding eigenvalue.

IV. RANDOM POLYCRYSTALS OF

LAMINATES

Returning to the general problem for arbitrary Kn,
suppose we construct a random polycrystal by packing
small bits of this laminate material into a large container
in a way so that the axis of symmetry appears randomly
over all possible orientations and also such that no empty
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FIG. 1: Various bulk modulus bounds: The outer most
bounds (blue dot-dash lines) are the standard Hashin-
Shtrikman bounds (HS) based only on information about the
layer constituents and their volume fractions. The black solid
lines are the Voigt and Reuss bounds (XV,XR) obtained from
appropriate averages of laminate constants in (3). The in-
ner most bounds (also blue dot-dash lines) are the Peselnick-
Meister bounds (PM) for hexagonal polycrystals. For con-
trast, the Dederich-Zeller bounds (DZ) (see Appendix B) are
also shown (dashed red lines).

volume (porosity) is left in the resulting composite. If the
ratio of grain size to overall composite is small enough so
the usual implicit assumption of scale separation applies
to the composite — but not so small that we are violating
the continuum hypothesis — then we have an example
of the type of material we want to study.

For each individual grain in this polycrystal, Eqs. (3)
are valid locally (i.e., for locally defined coordinates), and
the grain bulk modulus KR is given by (4) for all the
grains. The factors 3KR and 2GV

eff are not necessarily
eigenvalues of elastic stiffness for individual grains. The
Voigt average for shear is again given by (5), which is
an upper bound on the isotropic shear modulus of the
random polycrystal [16].

The advantage of studying polycrystals of laminates
is that we have available an array of theoretical results
from which to choose. For example, since each grain
is composed of isotropic constitutents, standard Voigt
and Reuss bounds [16], as well as the more restrictive
Hashin-Shtrikman bounds [17, 18] on composites made
up of isotropic constituents are available. Then, we can
instead, or in addition, consider Voigt and Reuss bounds
on the laminated grain materials. Formulas for these
bounds have already been given here for in Eqs. (4), (5),
and (8), respectively for KR, µV , and µR. The remaining
formula is well-known to be

KV = [2(c11 + c12) + 4c13 + c33] /9. (9)

Then, it is useful to distinguish between “correlated” and
“uncorrelated” bounds. For example, the most familiar
bounds — after the uncorrelated Voigt and Reuss bounds
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FIG. 2: Same as Figure 1 for the various shear modulus
bounds.

(i.e., the volume averaged mean and harmonic mean re-
spectively of the consitutents’ constants) — are the un-
correlated Hashin-Shtrikman bounds:

K±

HS =

[

N
∑

n=1

fn

Kn + 4µ±/3

]−1

− 4µ±/3 (10)

and

µ±

HS =

[

N
∑

n=1

fn

µn + ζ±

]−1

− ζ±, (11)

where

ζ± =
µ±

6

9K± + 8µ±

K± + 2µ±

, (12)

with K+ and K− being the highest and lowest values
of Kn in the system, and similarly µ+ (µ−) being the
highest (lowest) value of the shear modulus. Milton [19]
presented examples of correlated bounds where the cor-
relations were introduced specifically through spatial cor-
relation functions. But here we introduce correlations in-
stead through the laminated grains. The bounds (4), (5),
(8), and (9) are then correlated Voigt and Reuss bounds
because of the assumed internal grain-like structure.

We see in Figures 1 and 2 that these bounds (XR and
XV) for the polycrystalline case are fairly substantial
improvements over the uncorrelated Hashin-Shtrikman
bounds (HS±), which are themselves substantial im-
provements over the uncorrelated version of the Voigt
and Reuss bounds (not shown here, but the Voigt bound
is just a straight line in each plot between the end points
of these curves).

A correlated version of the Hashin-Shtrikman bounds
can be computed also, as has been shown by Peselnick
and Meister [12] and Watt and Peselnick [13] (see Ap-
pendix A for the details of these formulas, but not their
derivation). We see that these bounds are very tight in-
deed in comparison to all the others considered here. In
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FIG. 3: Illustrating the graphical construction leading to
the optimum parameters for the comparison material of the
lower and upper Peselnick-Meister-Watt bounds: (G−, K−),
(G+, K+), shown as red circles. The case shown is for the mid-
dle point of the examples shown in Figures 1 and 2 (volume
fraction of 0.50). Values of the constants entering the expres-
sions (see Appendix A) are: KV = 30.2162, c44 = 7.2727,
c66 = 22.0000, GR

eff = 14.8082, and GV

eff = 15.5653, in units
of GPa. The two parts fo the blue solid curve are determined
by (14) and (16).

particular, note that KR computed from (4) falls outside
the correlated Voigt and Reuss bounds (curves XV and
XR) of Figure 1.

For contrast, Figures 1 and 2 also plot another set
of bounds derived by Dederichs and Zeller [20] that is
also intended for use in uncorrelated systems (see Ap-
pendix B for the formulas and a brief discussion). The
DZ bounds behave quite differently from those of the
correlated bounds XR,XV,PM±. It is easy to see why
this is so. In the laminates, as the volume fractions be-
come small for one constituent at one end of the curves
and for the other constituent at the other end, the low
volume fraction constituent is approaching a flat disc-
like geometry. It is well-known [19] that in this circum-
stance disc-like inclusions tend to dominate the behavior
and, therefore, tend to hug the upper Hashin-Shtrikman
bound in the lower left-hand limit, and then to hug the
lower Hashin-Shtrikman bound in the upper right-hand
limit of the Figures. We see that this is so for the cor-
related bounds XR,XV,PM±. But the DZ± bounds are
uncorrelated and do not show this type of behavior at
all.

The best and also most relevant bounds here are obvi-
ously the Peselnick-Meister-Watt bounds [12, 13], which
are presented and briefly discussed in Appendix A. Fig-
ure 3 (following some similar figures in [13]) shows how
the parameter sets for the elastic comparison materials
are determined. The allowed regions in Figure 3 are the
bounded area in the upper right-hand corner, and the
similarly bounded area in the lower left-hand corner. The
red circles are therefore the points in the (G±,K±)-plane
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FIG. 4: As in Figure 3 for the case of constant bulk modulus,
in which case KV = KR = K, and GV

eff = GR

eff . Values of
the constants entering the expressions (see Appendix A) are:
K = 50.0000, c44 = 7.2727, c66 = 22.0000, GV

eff = 16.5546, in
units of GPa.

that produce the optimum bounds. It is clear that the
value of GV

eff plays a very dominant role in the structure
of this Figure as the singularity in the blue solid curve
occurs exactly at this value.

For the case of constant bulk modulus Kn = K, Fig-
ure 3 should be contrasted with Figure 4. Obviously, the
structure is much simpler, as the singularities in (22) and
(24) have disappeared through direct cancelation with
the numerator. It is still the case however that the al-
lowed regions in Figure 4 are the bounded areas in upper
right-hand corner, and the lower left-hand corner. Again
the red circles are the points in the (G±,K±)-plane that
produce the optimum bounds. However, it is no longer
clear from this Figure whether GV

eff is playing any role in
the analysis or not.

While attempting to find an answer to this question,
the author has spent some effort manipulating the form
of the equations for the shear modulus bounds and has
found what may be a more enlightening form of these
equations. (The derivation will not be given here as it
is rather straightforward to find the result again, once
the final expression is known.) The resulting simplified
formula for the Peselnick-Meister-Watt bounds on overall
shear modulus of a polycrystal of laminates when Kn =
K is:

µ±

PM =

[

1

5

(

1

GV
eff + ζ±

+
2

c44 + ζ±
+

2

c66 + ζ±

)]−1

−ζ±,

(13)
where

ζ± =
G±

6

(

9K + 8G±

K + 2G±

)

with G± = c44 or c66.

(14)
Using standard methods, it is not hard to show that, if
instead of optimum values of ζ±, we use ζ± = 0 or ∞,
then (13) reduces to the formulas (8) and (5) for the

correlated Reuss and Voigt bounds on the polycrystal’s
overall shear modulus.

We see that GV
eff still plays a dominant role here — in

the company of c44 and c66 — as one of the three values
(after multiplication by 2) that are the shear eigenvalues
of the elastic system. Furthermore, GV

eff is determined
for this case exactly by Eq. (6).

V. DISCUSSION

The results thus obtained show that, for the shear
modulus Geff of uniaxial shear for a transversely isotropic
system, we have 2GV

eff = ω+ when the bulk modulus
of the system is uniform. In this case, the quasi-shear
eigenvector is exactly in the same direction as the uniax-
ial shear component, so the quantity 2GV

eff — while more
generally a strict upper bound on the eigenvalue ω+ — is
exactly equal to it in this special case. Thus, the uniaxial
shear is in fact an eigenvector of this system. This hap-
pens in particular when Kn = K is a constant for random
polycrystals of laminates. The simplified formula (13) for
the bounds is therefore the main new result of this paper.
When compared to (8), it is suggestive that some very
simple forms for Hashin-Shtrikman bounds on shear can
probably be found for many such polycrystalline systems,
and especially so for granular laminates. The constant
bulk modulus limit is a most convenient place to begin a
search for such simplified expressions for the bounds.

Once these HS bounds are known, it is an elementary
operational exercise to determine self-consistent (SC) es-
timates based just on the analytical form of the bounds.
Monotonicity of the functional

M(ζ) =

[

1

5

(

1

GV
eff + ζ

+
2

c44 + ζ
+

2

c66 + ζ

)]−1

− ζ,

(15)
appearing in (13), is easy to prove (see [21] for examples
of such proofs), and furthermore ζ(K, G) = (G/6)(9K +
8G)/(K + 2G) is a monotonic functional of both argu-
ments. These facts guarantee that there is a unique so-
lution to the self-consistency relation

µSC ≡ M(ζ(K, µSC)), (16)

and furthermore that this solution always lies between
the bounds. To provide an example, consider the case
of Figure 4 when the volume fractions are both 50%.
Then, µ44 = 7.2727, µ66 = 22.0000, Geff = 16.5546,
µPM− = 13.1164, µPM+ = 13.8659, and µSC = 13.5537.
So the self-consistent estimate is not closely correlated
with the value of Geff , which is itself usually found outside
the correlated bounds on µ. Figure 5 illustrates these
results for the full range of volume fractions with the
same choice of constituents.

The results in Fig. 5 show very clearly that self-
consistent values fall between the bounds as expected,
and that the bounds themselves are in any case very close
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FIG. 5: Comparison of the shear modulus estimates over all
choices of volume fraction, for the same case considered in
Figure 4.

together for this high contrast example. Thus, an exact
result for shear modulus has not been found [so the anal-
ogy to Hill’s formula (1) is not perfect]. Nevertheless, for
most practical purposes, the results show that the predic-
tions of the theory using such correlated bounds — and
related self-consistent estimates — will often be as good
as, or perhaps better than, the precision of experimen-
tal measurements. (Maximum error incurred by using
the self-consistent estimate in the example of Figure 5 is
about 2%.) The value of Geff , while playing an important
role in the analysis, clearly should not be interpreted as
the actual value of the effective overall shear modulus for
the random polycrystal. Geff does however contribute
about 20% of the overall magnitude of the effective shear
modulus.

In conclusion, we note that, among other applications,
analytical results as presented here can be used very ef-
fectively when benchmarking numerical procedures for
estimating elastic behavior of complex composites.
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APPENDIX A: PESELNICK-MEISTER-WATT

BOUNDS FOR HEXAGONAL SYMMETRY

Hashin-Shtrikman-style bounds [17, 18] on the bulk
and shear moduli of isotropic random polycrystals com-
posed of hexagonal grains have been derived by Peselnick

and Meister [12], with later corrections by Watt and Pe-
selnick [13]. The main results are presented here using
notation consistent with that of our text, in order to em-
phasize the connections to the analysis presented. To
keep this summary brief, we will merely quote the re-
sults and refer the reader to the original papers for the
derivations.

Parameters used to optimize the Hashin-Shtrikman
bounds are K± and G±, which have the significance of
being the bulk and shear moduli of two isotropic com-
parison materials. G+, K+ are the values used in the for-
mulas for the upper bounds, and G−, K− for the lower
bounds. Formulas for the bounds are:

K±

PM = K± +
KV − K±

1 − 2β±(GV
eff − G±)

, (17)

and

µ±

PM = G± +
B±

2

1 + 2β±B±

2

, (18)

where

α± = −1
K±+4G±/3 ,

β± = 2α±

15 − 1
5G±

,

γ± = 1
9 (α± − 3β±),

(19)

and

B±

2 =
1
5

[GV

eff−G±

D±
+ 2(c44−G±)

1−2β±(c44−G±) + 2(c66−G±)
1−2β±(c66−G±)

]

,
(20)

with

D± = 1−β±(c11+c12+c33−3K±−2G±)−9γ±(KV −K±).
(21)

Optimum values of the moduli for the comparison mate-
rials have been shown to be (in our notation)

K− =
KV (GR

eff − G−)

(GV
eff − G−)

(22)

with

0 ≤ G− ≤ min(c44, G
R
eff , c66), (23)

and

K+ =
KV (G+ − GR

eff)

(G+ − GV
eff)

(24)

with

max(c44, G
V
eff , c66) ≤ G+ ≤ ∞. (25)

Note that, when G− = 0, K− = KR, because KR =
KV GR

eff/GV
eff from the product formulas [1]. Also, note

that, if Kn = K is constant, then K± = KV = KR = K
for any choice of G±, since then we also have that GV

eff =
GR

eff .
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For the laminated materials considered here, the min-
imum condition in (23) will never be satisfied by c66 ex-
cept in the trivial case of constant shear modulus. Each
of the other two arguments can possibly become the min-
imum under certain nontrivial circumstances. For the
materials considered here, it follows from (7) that the
maximum condition in (25) will always be uniquely sat-
isfied by c66, except again for the trivial case of constant
shear modulus.

Peselnick and Meister [12] had originally obtained all
the results here except for the additional condition in (23)
that permits c44 to be replaced in certain circumstancs
by GR

eff . This new condition was added by Watt and
Peselnick [13].

APPENDIX B: BOUNDS OF DEDERICHS AND

ZELLER FOR MULTIPHASE MEDIA

One of the bounds of Dederichs and Zeller [20] is based
on the assumption that, inside each grain of a multiphase
material, the distribution of different phases is indepen-
dent of the shape of the grain, and also independent of
the phases of contiguous grains. Grains are therefore as-
sumed to be completely uncorrelated, both internally and
externally. The results obtained for bulk modulus are:

K±

DZ =

[

N
∑

n=1

fn

Kn + 4g±/3

]−1

− 4g±/3, (26)

where

g− = c44 and g+ = c66 (27)

in our present notation [see eq. (7)]. Similarly, for shear
modulus, we have

µ±

DZ =

[

N
∑

n=1

fn

µn + ζ±

]−1

− ζ±, (28)

where

ζ− =
c44

6

〈9/µ + 8/K〉

〈1/µ + 2/K〉
=

g−
6

9 〈1/K〉
−1

+ 8g−

〈1/K〉
−1

+ 2g−
(29)

and

ζ+ =
c66

6

〈9K + 8µ〉

〈K + 2µ〉
=

g+

6

9 〈K〉 + 8g+

〈K〉 + 2g+
. (30)

These bounds on bulk modulus are the same as those
of Beran and Molyneux [22] and Miller [23]. The up-
per bound on shear modulus is the same as that of Mc-
Coy [24] and Silnutzer [25]. Because of the simple func-
tional form of both sets of bounds, it is easy to show [21]
that they are always at least as restrictive as — and, for
nonnegligible volume fractions of inclusions, normally a
significant improvement upon — the Hashin-Shtrikman
bounds [17, 18].

We choose to consider these bounds here because they
depend only on simple volume averages of the constituent
elastic constants, and also because they show — by way
of contrast to the other bounds (see Figures 1 and 2) —
that it does indeed matter what assumptions are made
about the microstructure of the composite.
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